Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.716
Filter
1.
J Hazard Mater ; 471: 134423, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678719

ABSTRACT

Phthalate esters (PAEs) are a class of plasticizers that are readily released from plastic products, posing a potential exposure risk to human body. At present, much attention is paid on PAE concentrations in indoor dust with the understanding of PAEs toxicity. This study collected 8187 data on 10 PAEs concentrations in indoor dusts from 26 countries and comprehensively reviewed the worldwide distribution, influencing factors, and health risks of PAEs. Di-(2-ethylhexyl) phthalate (DEHP) is the predominant PAE with a median concentration of 316 µg·g-1 in indoor dust. Polyvinyl chloride wallpaper and flooring and personal care products are the main sources of PAEs indoor dust. The dust concentrations of DEHP show a downward trend over the past two decades, while high dust concentrations of DiNP are found from 2011 to 2016. The median dust contents of 8 PAEs in public places are higher than those in households. Moreover, the concentrations of 9 PAEs in indoor dusts from high-income countries are higher than those from upper-middle-income countries. DEHP in 69.8% and 77.8% of the dust samples may pose a potential carcinogenic risk for adults and children, respectively. Besides, DEHP in 16.9% of the dust samples may pose a non-carcinogenic risk to children. Nevertheless, a negligible risk was found for other PAEs in indoor dust worldwide. This review contributes to an in-depth understanding of the global distribution, sources and health risks of PAEs in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Esters , Phthalic Acids , Plasticizers , Dust/analysis , Air Pollution, Indoor/analysis , Phthalic Acids/analysis , Phthalic Acids/toxicity , Humans , Esters/analysis , Plasticizers/analysis , Plasticizers/toxicity , Risk Assessment , Environmental Exposure/analysis , Air Pollutants/analysis
2.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580121

ABSTRACT

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Subject(s)
Anthozoa , Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Animals , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Organophosphates/analysis , Organophosphates/metabolism , Esters/analysis , Bioaccumulation , Seawater/chemistry , Coral Reefs
3.
Riv Psichiatr ; 59(2): 52-59, 2024.
Article in English | MEDLINE | ID: mdl-38651773

ABSTRACT

INTRODUCTION: Prenatal alcohol exposure causes a variety of impairments to the fetus called Fetal Alcohol Spectrum Disorders (FASD). Since it is very difficult to identify women that consume alcohol during pregnancy, different methods have been studied to evaluate alcohol exposure. Ethyl Glucuronide (EtG) and Fatty Acid Ethyl Esters (FAEEs) are commonly used to measure alcohol consumption in individuals at-risk for alcohol abuse, including pregnant women. MATERIALS AND METHODS: We conducted a study of two cohorts of 1.5 year-old infants (of mothers without a history of alcohol abuse) with or without meconium samples positive to both EtG and FAEEs and we evaluated their cognitive-behavioral development by the Griffiths Mental Developmental Scale (GMDS) method. Our protocol included 8 infants with meconium positive to alcohol metabolites (EtG and FAEEs) and 7 with meconium negative to alcohol metabolites. RESULTS: None of the 8 alcohol metabolites positive meconium infants exhibited distinctive facial features and growth retardation of severe FASD, showing that other factors may contribute to the FASD onset but elevations in EtG and FAEEs in the meconium were significantly associated with disrupted neurodevelopment and adaptive functions within the first year and a half of life. Indeed, we found out that infants with meconium positive for both EtG and FAEEs, although without displaying any FASD morphological features, had a delay in the fine regulation of their own locomotory capabilities. CONCLUSIONS: Further analyses and larger studies are needed to estimate the right link between prenatal alcohol exposure and the different range of disorders connected but this study provides an additional step in the field of FASD in order to suggest early treatments for at-risk newborns and infants.


Subject(s)
Biomarkers , Fetal Alcohol Spectrum Disorders , Glucuronates , Meconium , Humans , Meconium/chemistry , Meconium/metabolism , Pilot Projects , Female , Fetal Alcohol Spectrum Disorders/metabolism , Biomarkers/metabolism , Glucuronates/analysis , Infant , Male , Pregnancy , Prenatal Exposure Delayed Effects , Fatty Acids/metabolism , Fatty Acids/analysis , Alcohol Drinking/adverse effects , Infant, Newborn , Locomotion , Esters/analysis , Child Development
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1549-1557, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621938

ABSTRACT

The dichloromethane fraction of Kadsura heteroclita roots was separated and purified by chromatographic techniques(e.g., silica gel, Sephadex LH-20, ODS, MCI column chromatography) and semi-preparative HPLC. Twenty compounds were isolated from K. heteroclita, and their structures were identified by NMR, MS, UV, and X-ray single crystal diffraction techniques. Twenty compounds were isolated from K. heteroclita, which were identified as xuetongdilactone G(1), mallomacrostin C(2), 3,4-seco(24Z)-cychmrt-4(28),24-diene-3,26-dioic acid 3-methyl ester(3), nigranoic acid(4), methyl ester schizanlactone E(5), schisandronic acid(6), heteroclic acid(7), wogonin(8),(2R,3R)-4'-O-methyldihydroquercetin(9), 15,16-bisnor-13-oxo-8(17),11E-labdadien-19-oic acid(10), stigmast-4-ene-6ß-ol-3-one(11), psoralen(12),(1R,2R,4R)-trihydroxy-p-menthane(13), homovanillyl alcohol(14), 2-(4-hydroxyphenyl)-ethanol(15), coniferaldehyde(16),(E)-7-(4-hydroxy-3-methoxyphenyl)-7-methylbut-8-en-9-one(17), acetovanillone(18), vanillic acid(19) and vanillin(20). Compound 1 is a new compound named xuetongdilactone G. Compounds 2-3 and 8-20 are isolated from K. heteroclita for the first time.


Subject(s)
Kadsura , Kadsura/chemistry , Magnetic Resonance Spectroscopy , Plant Roots/chemistry , Esters/analysis
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38565314

ABSTRACT

AIMS: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.


Subject(s)
Candida , Caproates , Esters , Fermentation , Fermented Foods , Caproates/metabolism , Esters/metabolism , Esters/analysis , Fermented Foods/microbiology , Fermented Foods/analysis , Candida/metabolism , Flavoring Agents/metabolism , Food Microbiology , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis
6.
Sci Rep ; 14(1): 7944, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575598

ABSTRACT

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/analysis , Plastics , Vacuum , Phthalic Acids/chemistry , Polyethylene/analysis , Polymers , Dibutyl Phthalate , Esters/analysis , China
7.
Chemosphere ; 357: 142041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636919

ABSTRACT

Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 µg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.


Subject(s)
Agriculture , Environmental Monitoring , Phthalic Acids , Soil Pollutants , Soil , Soil Pollutants/analysis , Phthalic Acids/analysis , Soil/chemistry , Risk Assessment , Esters/analysis , Humans , Islands
8.
Sci Total Environ ; 929: 172762, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670350

ABSTRACT

Organophosphate esters (OPEs) are a class of emerging and ubiquitous contaminants that are attracting increasing attention, and their large-scale use as flame retardants and plasticizers has led to their pervasive presence in the environment, although their broader impacts remain unknown. In this study, 11 OPEs were measured in the atmosphere of Southeast Asia and Southwest China during 2016. The ∑11OPEs were higher in this region (78.0-1670 pg/m3, mean 458 pg/m3) than in many remote areas, lower than in developed regions, and comparable to levels in many developing country cities. Generally, the ∑11OPEs were higher in urban (105-1670 pg/m3, mean 538 pg/m3) than in suburban (78.0-1350 pg/m3, mean 388 pg/m3). Seasonal variations of OPEs in the air were more pronounced in Cambodia and Laos, especially for Triphenyl Phosphate (TPHP). Seasonal variations of ∑11OPEs in most regions correspond to changes in temperature and rainfall. Biomass burning may be also a factor in facilitating OPE emissions from biomass materials or soil into the atmosphere of Southeast Asia. The random forest analysis showed that among these, rainfall had the greatest effect on the seasonal variation of atmospheric OPE concentrations, followed by biomass burning and temperature. The inter-regional variation of ∑11OPEs in Southeast Asia was related to population and economic development in each region. Airflow trajectories indicated that the OPEs in this region were mainly from local sources. The health risk assessment revealed that the inhalation exposure risks of OPEs to the residents in the study areas were very low during the sampling period, but may be increasing.


Subject(s)
Air Pollutants , Environmental Monitoring , Esters , Organophosphates , China , Air Pollutants/analysis , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis , Seasons , India , Atmosphere/chemistry , Air Pollution/statistics & numerical data
9.
Chemosphere ; 356: 141874, 2024 May.
Article in English | MEDLINE | ID: mdl-38575079

ABSTRACT

Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Water Pollutants, Chemical , Esters/analysis , Organophosphates/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Air/analysis , Water/chemistry , Wastewater/chemistry , Atmosphere/chemistry , Ecosystem
10.
Chemosphere ; 356: 141873, 2024 May.
Article in English | MEDLINE | ID: mdl-38593958

ABSTRACT

Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 µg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.


Subject(s)
Environmental Monitoring , Esters , Phthalic Acids , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phthalic Acids/analysis , Esters/analysis , Soil Pollutants/analysis , Brazil , Soil/chemistry
11.
Environ Pollut ; 348: 123655, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38467366

ABSTRACT

Although global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using 137Cs and 210Pbxs methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today. Sediment grain size and parameters related to organic matter (OM) were also measured as potential factors that may affect the temporal distribution of OPEs and PAEs in sediments. Our results show that OPE and PAE levels increased continuously in Rhone and Rhine sediments since the first records. In both rivers, ∑PAEs levels (from 9.1 ± 1.7 to 487.3 ± 27.0 ng g-1 dry weight (dw) ± standard deviation and from 4.6 ± 1.3 to 65.2 ± 11.2 ng g-1 dw, for the Rhine and the Rhone rivers, respectively) were higher than ∑OPEs levels (from 0.1 ± 0.1 to 79.1 ± 13.7 ng g-1 dw and from 0.6 ± 0.1 to 17.8 ± 2.3 ng g-1 dw, for Rhine and Rhone rivers, respectively). In both rivers, di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAE, followed by diisobutyl phthalate (DiBP), while tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE. No relationship was found between granulometry and additives concentrations, while organic matter helps explain the vertical distribution of PAEs and OPEs in the sediment cores. This study thus establishes a temporal trajectory of PAEs and OPEs contents over the last decades, leading to a better understanding of historical pollution in these two Western European rivers.


Subject(s)
Phthalic Acids , Phthalic Acids/analysis , Esters/analysis , Dibutyl Phthalate/analysis , Environmental Pollution/analysis , Rivers , Organophosphates/analysis , China
12.
Environ Sci Technol ; 58(11): 4904-4913, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437168

ABSTRACT

The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.


Subject(s)
Carps , Flame Retardants , Metabolic Diseases , Animals , Rivers , PPAR gamma , Esters/analysis , Organophosphates/toxicity , Organophosphates/analysis , Cholesterol/analysis , Lipids , Flame Retardants/analysis , China , Environmental Monitoring/methods
13.
Sci Total Environ ; 926: 172045, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554968

ABSTRACT

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Environmental Pollutants , Flame Retardants , Humans , Dust/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Vietnam , Electronic Waste/analysis , Air Pollution, Indoor/analysis , Organophosphates/analysis , Esters/analysis , China
14.
Huan Jing Ke Xue ; 45(3): 1830-1839, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471894

ABSTRACT

The removal mechanisms of phthalic acid esters (PAEs) have attracted much attention because of their endocrine-disrupting properties and persistence in environmental media. In order to reveal the removal mechanism of PAEs and involved keystone taxa and functional genes, purple soils were polluted by di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), respectively, along a gradient of 0, 5, 10, and 20 mg·kg-1 and cultured for 90 days in the dark. The results showed that the degradation dynamics of DBP and DEHP were well-fitted by the first-order kinetic model, and the half-life of DBP and DEHP ranged from 17.0 to 38.2 days. The degradation rate of DBP (5 mg·kg-1) was the fastest, and that of DEHP (20 mg·kg-1) was the slowest. The soil samples of the seventh day and the fifteenth day were analyzed using metagenomic sequencing. NMDS and cluster analysis showed that there was a significant difference between the bacterial community structure of soil samples from the seventh day and the fifteenth day. The relative abundance of Actinobacteria increased from the seventh day to the fifteenth day. The smaller the half-life of DBP or DEHP, the higher the relative abundance of Actinobacteria in the different treatments. In addition, Streptomyces was the dominant genus in all polluted soils. Co-occurrence network analysis elucidated that Pandoraea was a keystone genus of the soil bacterial communities, which could be used to indicate the pollution levels of DBP and DEHP. The results of KEGG annotation demonstrated that Pandoraea was responsible for benzoate degradation, quorum sensing, ABC transporters, and the two-component system and could promote the intercellular communications and the microbial growth and proliferation and maintain the stability of the community structure. Therefore, the degradation rate of DBP and DEHP in purple soils depended on their initial content and their own properties. Actinobacteria played an important role in the PAEs degradation, and Pandoraea played a major part in promoting PAEs degradation and regulating the stability of the structure and function of degrading bacterial communities.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil/chemistry , Phthalic Acids/analysis , Dibutyl Phthalate , Esters/analysis
15.
Mar Pollut Bull ; 201: 116256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521000

ABSTRACT

We report the first empirical confirmation of the co-occurrence of organophosphate esters (OPEs) additives and microplastics (MPs) in benthic compartments from the Loire estuary. Higher median concentrations of MPs (3387 items/kg dw), ∑13tri-OPEs (12.0 ng/g dw) and ∑4di-OPEs (0.7 ng/g dw) were measured in intertidal sediments with predominance of fine particles, and under higher anthropogenic pressures, with a general lack of seasonality. Contrarily, Scrobicularia plana showed up to 4-fold higher ∑tri-OPE concentrations in summer (reaching 37.0 ng/g dw), and similar spatial distribution. Polyethylene predominated in both compartments. Tris(2-ethylhexyl) phosphate (TEHP), its degradation metabolite (BEHP) and tris-(2-chloro, 1-methylethyl) phosphate (TCIPP) were the most abundant OPEs in sediments, while TCIPP predominated in S. plana. The biota-sediment accumulation factors suggest bioaccumulation potential for chlorinated-OPEs, with higher exposure in summer. No significant correlations were generally found between OPEs and MPs in sediments suggesting a limited role of MPs as in-situ source of OPEs.


Subject(s)
Environmental Monitoring , Flame Retardants , Microplastics , Plastics , Estuaries , Flame Retardants/analysis , Plasticizers/analysis , Organophosphates/analysis , Phosphates , Esters/analysis , China
16.
Environ Sci Pollut Res Int ; 31(16): 23408-23434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456985

ABSTRACT

Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.


Subject(s)
Esters , Phthalic Acids , Humans , Esters/analysis , Phthalic Acids/analysis , Environmental Pollution/analysis , Plasticizers/analysis , Water/analysis , Dibutyl Phthalate , China
17.
Chemosphere ; 353: 141564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417490

ABSTRACT

In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.


Subject(s)
2,4-Dinitrophenol/analogs & derivatives , Diethylhexyl Phthalate , Phthalic Acids , Humans , Diethylhexyl Phthalate/analysis , Gas Chromatography-Mass Spectrometry , Phthalic Acids/analysis , Dibutyl Phthalate/analysis , Dust/analysis , China , Esters/analysis
18.
Article in English | MEDLINE | ID: mdl-38422382

ABSTRACT

Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are process contaminants commonly found in refined edible oils which are often added to infant formulas. The Taiwan Food and Drug Administration (TFDA) launched regulations for GEs in infant formulas that went into effect on 1 July 2021. To investigate levels of GEs and 3-MCPDEs in infant formula powder, 45 products were sampled and analysed during 2020-2021. The contents of GEs and 3-MCPDEs in formulas of different brands significantly varied, but their concentrations in all of the formulas complied with European Union (EU) regulations. Infant formulas containing palm oil had significantly higher 3-MCPDE levels in both extracted oils and milk powder than those without palm oil. Concentrations of GEs and 3-MCPDEs in infant formula powder and extracted oils were significantly lower in products from Europe than those from Australia and New Zealand. Infants aged 0-1 years in Taiwan who consumed only infant formula showed a margin of exposure (MoE) exceeding 25,000. Mean consumer exposures to 3-MCPDEs stayed below the tolerable daily intake (TDI), while high exposures at the 95th percentile (P95) exceeded the TDI by 1.7-fold. Herein, we present the changing trends in the risk assessment results of infant formula across various countries in the decade. Implementation of regulations and mitigation strategy effectively reduced the risk of infants being exposed to GEs and 3-MCPDEs through infant formula.


Subject(s)
Infant Formula , Propylene Glycols , alpha-Chlorohydrin , Infant , Humans , Palm Oil , Infant Formula/analysis , alpha-Chlorohydrin/analysis , Esters/analysis , Powders , Taiwan , Food Contamination/analysis , Risk Assessment , Plant Oils/analysis
19.
J Hazard Mater ; 468: 133710, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38364582

ABSTRACT

Soil samples collected from 50 greenhouses (GHs) cultivated with tomatoes (plastic-covered:24, glass-covered:26), 5 open-area tomato growing farmlands, and 5 non-agricultural areas were analyzed in summer and winter seasons for 13 PAEs. The total concentrations (Σ13PAEs) in the GHs ranged from 212 to 2484 ng/g, wheeas the concentrations in open-area farm soils were between 240 and 1248 ng/g. Σ13PAE in non-agricultural areas was lower (35.0 - 585 ng/g). PAE exposure through the ingestion of tomatoes cultivated in GH soils and associated risks were estimated with Monte Carlo simulations after calculating the PAE concentrations in tomatoes using a partition-limited model. DEHP was estimated to have the highest concentrations in the tomatoes grown in both types of GHs. The mean carcinogenic risk caused by DEHP for tomato grown in plastic-covered GHs, glass-covered GHs, and open-area soils were 2.4 × 10-5, 1.7 × 10-5 and 1.1 × 10-5, respectively. Based on Positive Matrix Factorization results, plastic material usage in GHs (including plastic cover material source for plastic-GHs) was found to be the highest contributing source in both types of GHs. Microplastic analysis indicated that the ropes and irrigation pipes inside the GHs are important sources of PAE pollution. Pesticide application is the second highest contributing source.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , Solanum lycopersicum , Soil , Plastics/analysis , Dietary Exposure/analysis , Esters/analysis , Soil Pollutants/analysis , Phthalic Acids/analysis , China , Dibutyl Phthalate
20.
Environ Pollut ; 346: 123653, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38402940

ABSTRACT

Organophosphate triesters (tri-OPEs) have found substantial use as plasticizers and flame retardants in commercial and industrial products. Despite upcoming potential restrictions on use of OPEs, widespread environmental contamination is likely for the foreseeable future. Organophosphate diesters (di-OPEs) are known biotic or abiotic degradation products of tri-OPEs. In addition, direct use of di-OPEs as commercial products also contributes to their presence in the atmosphere. We review the available data on contamination with tri-OPEs and di-OPEs in both indoor and outdoor air. Concentrations of tri-OPEs in indoor air exceed those in outdoor air. The widespread discovery of tri-OPE traces in polar regions and oceans is noteworthy and is evidence that they undergo long-range transport. There are only two studies on di-OPEs in outdoor air and no studies on di-OPEs in indoor air until now. Current research on di-OPEs in indoor and outdoor air is urgently needed, especially in countries with potentially high exposure to di-OPEs such as the UK and the US. Di-OPE concentrations are higher at e-waste dismantling areas than at surrounding area. We also summarise the methods employed for sampling and analysis of OPEs in the atmosphere and assess the relative contribution to atmospheric concentrations of di-OPEs made by environmental degradation of triesters, compared to the presence of diesters as by-products in commercial triester products. Finally, we identify shortcomings of current research and provide suggestions for future research.


Subject(s)
Flame Retardants , Organophosphates , Organophosphates/analysis , Environmental Exposure/analysis , Environmental Monitoring , Flame Retardants/analysis , Atmosphere , Esters/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL
...